Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 64: e21200118, 2021. tab, graf
Article in English | LILACS | ID: biblio-1339316

ABSTRACT

Abstract This paper focuses on developing a reduced distance matrix to improve the computational performance during the protein interactions clustering. This proposed matrix considers as centroids two alpha carbon atoms from a protein structure and stores the distances between these centroids and the other atoms from this same structure. Each row in this matrix represents a database record and each column is a distance value. Through this build matrix, clusters were performed using K-Means Clustering. The precision and performance of this presented technique were compared with aCSM, RID and another distance matrix methodology that considers the distances between all atoms from each protein structure. The results were satisfactory. The reduced distance matrix obtained a high precision and the best computational performance.


Subject(s)
Protein Interaction Maps , Carbon , Cluster Analysis , Computing Methodologies
2.
Genet. mol. biol ; 27(4): 673-678, Dec. 2004. ilus, tab, graf
Article in English | LILACS | ID: lil-391246

ABSTRACT

A new scheme for representing proteins of different lengths in number of amino acids that can be presented to a fixed number of inputs Artificial Neural Networks (ANNs) speel-out classification is described. K-Means's clustering of the new vectors with subsequent classification was then possible with the dimension reduction technique Principal Component Analysis applied previously. The new representation scheme was applied to a set of 112 antigens sequences from several parasitic helminths, selected in the National Center fo Biotechnology Information and classified into fourth different groups. This bioinformatic tool permitted the establishment of a good correlation with domains that are already well characterized, regardless of the differences between the sequences that were confirmed by the PFAM database. Additionally, sequences were grouped according to their similarity, confirmed by hierarchical clustering using ClustalW.


Subject(s)
Animals , Antigens, Helminth , Computational Biology , Artificial Intelligence , Cluster Analysis , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL